

NOAA Technical Memorandum NWS WR-140

THE INFLUENCE OF CLOUDINESS ON SUMMERTIME TEMPERATURES IN THE EASTERN WASHINGTON FIRE WEATHER DISTRICT

James Holcomb

11-1

National Weather Service Western Region Salt Lake City, Utah April 1979

notional oceanic and atmospheric administration ,

National Weather Service

NOAA TECHNICAL MEMORANDA National Weather Service, Western Region Subseries

The National Weather Service (NWS) Western Region (WR) Subseries provides an informal medium for the documentation and quick dissemination of results not appropriate, or not yet ready, for formal publication. The series is used to report on work in progress, to describe technical procedures and practices, or to relate progress to a limited audience. These Technical Memoranda will report on investigations devoted primarily to regional and local problems of interest mainly to personnel, and hence will not be widely distributed.

Papers 1 to 25 are in the former series, ESSA Technical Memoranda, Western Region Technical Memoranda (WRTM); papers 24 to 59 are in the former series, ESSA Technical Memoranda, Weather Bureau Technical Memoranda (WBTM). Beginning with 60, the papers are part of the series, NOAA Technical Memoranda NWS. Out-of-print memoranda are not listed (inclusive, i-115).

Papers 2 to 22, except for 5 (revised edition), are available from the National Weather Service Western Region, Scientific Services Division, P. 0. Box 11188, Federal Building, 125 South State Street, Salt Lake City, Utah 84147. Paper 5 (revised edition), and all others beginning with 25 are available from the National Technical Information Service. U. 5. Department of Commerce, Sills Building, 5285 Port Royal Road, Springfield, Virginia 22151. Prices vary for all paper copy; \$2.25 microfiche. Order by accession number shown in parentheses at end of each entry.

ESSA Technical Memoranda (WRTM)

4

- Climatological Precipitation Probabilities. Compiled by Lucianne Miller, December 1965. Western Region Pre- and Post-FP-3 Program, December 1, 1965, to Fabruary 20, 1966. Edward D. Diemer, March 1966. Station Descriptions of Local Effects on Synoptic Weather Patterns. Philip Williams, Jr., April 1966 (revised November 1967, October 1969). (PB-17800) Final Report on Precipitation Probability Test Programs. Edward D. Diemer, May 1966. Interpreting the RAREP. Herbert P. Benner, May 1966 (revised January 1967). Some Electrical Processes in the Atmosphere. J. Latham, June 1966. A Digitalized Summary of Radar Echoes within 100 Miles of Sacramento, California. J. A. Youngberg and L. B. Overaas, December 1966. Limitations of Selected Meteorological Data. December 1966. An Objective Aid for Forecasting the End of East Winds in the Columbia Gorge, July through October. D. John Coparanis, April 1967.

- Derivation of Radar Horizons in Mountainous Terrain. Roger G. Pappas, April 1967.
 - ESSA Technical Memoranda, Weather Bureau Technical Memoranda (WBTM)

- Losa technical Memoranda, Weather Bureau Technical Memoranda (WBTM)
 Varification of Operational Probability of Precipitation Forecasts, April 1966-March 1967. W. W. Dickey, October 1967. (PD-176240)
 A Study of Winds in the Lare Mead Recreation Area. R. F. Augulis, January 1968. (PB-177630)
 Weather Extremes. R. J. Schmidli, April 1968 (revised July 1968). (PB-178928)
 Small-Scale Analysis and Frediction. Philip Williams, Jr., May 1968. (PB-178425)
 Numerical Meather Prediction and Synophic Meteorology. Cont. Thomas D. Murphy, U.S.A.F., May 1968. (AD-673365)
 Precipitation Detection Probabilities by Salt Lake ARTC Radars. Robert K. Belesky, July 1968. (PB-179084)
 Probability Forecasting-A Problem Analysis with Reference to the Pontland Fire Weather District. Harold S. Ayer, July 1968. (PB-17289)
 Joint ESSA/FAA ARTC Radar Weather Surveillance Program. Herbert P. Benner and DeVon B. Smith, December 1968 (rev. June 1970). (AD-681857)

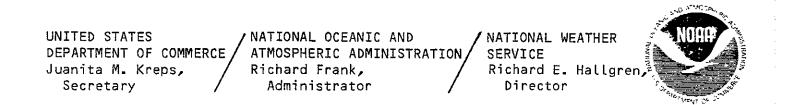
- Joint ESSA/FAA ARTC Reder Weather Surveillance Program. Herbert P. Benner and DeVon B. Smith, December 1968 (rev. June 1970). (AD-681857) Temperature Trends In Sacramento--Another Heat Island. Anthony D. Lentini, February 1969. (PB-183055) Disposal of Logging Residues without Damage to Air Quality. Owen P. Cramer, March 1969. (PB-183057) Climate of Phoenix, Arizona. R. J. Schmidli, P. C. Kangleser, and R. S. Ingram, April 1969. (Rev. July 1971; May 1976.) (PB-184295) Uppet-Air Loke over Northwestern United States. A. L. Jacobson, April 1969. (PB-184296) The Man-Machine Mix In Applied Weather Forecasting in the 1970s. L. W. Sneilman, August 1969. (PB-185068) Analysis of the Southern California Santa Ana of January 15-17, 1966. Barry B. Aronovitch, August 1969. (PB-185762) Estimates Return Periods for Short-Duration Precipitation in Arizona. Paul (C. Kangleser, October 1969. (PB-187763) Applications of the Net Radiometer to Short-Range Fog and Stratus Forecasting at Eugens, Oregon. L. Yee and E. Bates, December 1969. (PB-190476) Statistical Analysis as a Flood Routing Tool. Robert J. C. Burnash, December 1969. (PB-18744) Tsunami. Richard P. Augulis, February 1970. (He-190157) Predicting Precipitation Type. Robert J. C. Burnash and Floyd E. Hug, March 1970. (PB-190962) Statistical Report on Aeroaliergens (Poliens and Molds) Fort Huachuca, Arizona, 1969. Wayne S. Jonnson, April 1970. (PB-191743) Mestern Region Sea State and Surf Enceaster's Manual. Gordon C. Shields and Gerald B. Burdwell, July 1970.(PB-193102) Sacramento Waather Redar Climatology. R. G. Papas and C. M. Veliguette, July 1970. (PB-193347) A Reflement of the SARR Model to a Basin without Discharge Record. Vall Scharmentorian and Donald W. Kuehl, August 1970. (PB-19334)

- Application of The Spake addet to a Gastri and a particulation in Receiver and a second addet of the Spake addet in a Gastri and a particulation in Northwestern Utah. Philip Williams, Jr., and Werner J. Heck, Sept. 1970. (PB-194389) Preliminary Report on Agricultural Field Burning vs. Atmospheric Visibility in the Willamette Valley of Oregon. Earl M. Bates and David O. Chilcote, September 1970. (PB-194710) Air Pollution by Jet Aircraft at Seattle-Tacoma Airport. Wallace R. Donaldson, October 1970. (COM-71-00017) Application of PE Model Forecast Parameters to Local-Area Forecasting. Leonard W. Sneilman, Oct. 1970. (COM-71-00016)
- - NOAA Technical Memoranda (NWS WR)

- An Aid for Forecasting the Minimum Temperature at Medford, Oregon. Arthur W. Fritz, October 1970. (COM-71-00120) Forecasting the Catalina Eddy. Arthur L. Elchelberger, February 1971. (COM-71-00223) 700-mb Warm Air Advection as a Forecasting Tool for Montana and Northern Idaho. Norris E. Woerner, February 1971. (COM-71-00349)

- (COM-71-00349) Wind and Weather Regimes at Great Falls, Montana. Warren B. Price, March 1971. A Preliminary Report on Correlation of ARTCC Radar Echoes and Precipitation. Wilbur K. Hall, June 1971. (COM-71-00829) National Weather Service Support to Sparing Activities. Fills Burton, August 1971. (COM-71-00956) Western Region Synoptic Analysis-Problems and Methods. Philip Williams, Jr., February 1972. (COM-72-10433) Thunderstorms and Hall Days Probabilities in Nexada. Clarence M. Sakamoto, April 1972. (COM-72-10543) A Study of the Low Level Jet Stream of the Son Joaquin Valley. Ronald A. Willis and Philip Williams, Jr., May 1972. (COM-72-10707). Monthly Climatological Charts of the Behavior of Fog and Low Stratus at Los Angeles International Airport. Donald M. Gales, July 1972. (COM-72-11140) A Study of Radar Echo Distribution in Arizona During July and August. John E. Hales, Jr., July 1972. (COM-72-11146) Forecasting Precipitation at Bakersfield, California, Using Pressure Gradient Vectors, Earl T. Riddlough, July 1972. (COM-72-11146)

- (COM-72-11146) Climate of Stockton, California. Robert C. Nelson, July 1972. (COM-72-10920) Estimation of Number of Days Above on Below Selected Temperatures. Climence M. Sakamoto, October 1972. (COM-72-10021) An Aid for Forecasting Summer Maximum Temperatures at Seattle, Washington. Edgar G. Johnson, Nov. 1972. (COM-73-10150) Flash Flood Forecasting and Warning Program in the Western Region. Philip Williams, Jr., Chester L. Glenn, and Roland L. Raetz, December 1972. (Rev. Morch 1978.) (COM-73-10251) A Comparison of Manual and Semiautomatic Methods of Digitizing Analog Wind Records. Glenn E. Rasch, March 1973. (COM-73-10669)


- (COM-73-10769) Conditional Probabilities for Sequences of Wet Days at Phoenix, Arizona. Paul C. Kangieser, June 1973. (COM-73-11264) A Refinement of the Use of K-Values in Forecasting Thunderstorms in Washington and Oregon. Robert Y. G. Lee, June 1973. (COM-73-11276) Objective Forecast of Precipitation over the Western Region of the United States. Julia N. Paegle and Larry P. Kieruiff, September 1973. (COM-73-11946/3AS) A Thunderstorm "Warm Wake" at Midland, Texas: Richard A. Wood, September 1973. (COM-73-11845/AS) Arizona "Eddy" Tornadoes: Robert S. Ingram, October 1973. (COM-73-10465)

NOAA Technical Memorandum NWS WR-140

THE INFLUENCE OF CLOUDINESS ON SUMMERTIME TEMPERATURES IN THE EASTERN WASHINGTON FIRE WEATHER DISTRICT

James Holcomb

National Weather Service Office Wenatchee, Washington April 1979

This Technical Memorandum has been reviewed and is approved for publication by Scientific Services Division, Western Region.

Judy

L. W. Snellman, Chief Scientific Services Division Western Region Headquarters Salt Lake City, Utah

CONTENTS

Page

1.8

Tables and Figures iv • . . 1 I. Introduction • • . . . 1 II. Procedure 3 III. Results Use as an Objective Aid 4. IV. 5 V.

TABLES AND FIGURES

ء ۱

.

Page

Table 1.	Objective Categorization Used for 24-hour Sky-Cover Change between 1400 PDT Yesterday and 1400 Tuesday	2
Table 2.	Summary of Regression Estimate of 1400 PDT Surface Temperature •••••	6
Table 3.	Test of Equations on Zones 675 and 686 July and August 1975 ••••	6
Figure 1.	Fire Weather Forecast Zones in Eastern Washington Fire Weather District	7
Figure 2.	Weather Zone Average Temperature Change vs. 24-Hour 12Z 850-mb Temperature Change and 24-Hour 1400 PDT to 1400 PDT Sky-Cover	
	Change • • • • • • • • • • • • • • • • • • •	8

iv

THE INFLUENCE OF CLOUDINESS ON SUMMERTIME TEMPERATURES IN THE EASTERN WASHINGTON FIRE WEATHER DISTRICT

James Holcomb Weather Service Office Wenatchee, Washington

I. INTRODUCTION

The National Fire Danger Rating System now used by most fire protection agencies in the United States requires an afternoon temperature value, among other weather parameters, to compute the fire-danger indices. Temperature forecasts must be provided by the fire-weather forecaster in order to compute expected fire danger. Temperature variations also have considerable influence on changes in humidity in eastern Washington (higher the temperature, the lower the humidity) and in addition temperature strongly influences other factors important in fire-danger potential such as stability of the air mass and the threat of thunderstorms. Because of the importance of temperature on all of these factors, a reasonably accurate temperature forecast is needed and we strive for a prediction falling with about 4°F of the observed value.

Two important factors causing variations in afternoon temperatures during the summer season in eastern Washington are changes in general air-mass temperature and changes in cloud cover. Minor short waves passing over eastern Washington every few days bring quite frequent surface temperature variations due to changes in air-mass temperature and cloud cover. Both of these factors often operate independently in producing the temperature variations. Objective aids have been developed which adequately forecast surface temperature changes resulting from general air-mass temperature changes. However, temperature variations due to cloud cover have been estimated subjectively. This study attempts to determine objectively the influence of cloud cover change of surface temperature change in each of six fire weather foreast zones in eastern Washington. An objective aid is then presented which combines the influence of general air-mass temperature change and cloud cover change on surface temperature.

II. PROCEDURE

Current fire weather forecast procedures for use with the National Fire Danger Rating System through the AFFIRMS computer program require, among other things, a 24-hour trend prediction of the 1400 PDT surface temperature and a prediction of sky cover verifying at 1400 PDT. This is required for each fire-danger station but because of the large number of stations, the practice has been to issue one forecast for a group of stations which are meteorologically homogeneous. The eastern Washington fire-weather district has been divided into six such groupings, called weather zones, where stations in each usually trend in the same direction with about the same magnitude. These weather zones are shown in Figure 1 along with the number of fire-danger stations in each. Observations from the fire-danger stations, on which the forecasts are applied, are taken near 1400 PDT and entered into the AFFIRMS computer program where they are averaged by weather zones. The "present-weather" group of a fire-danger observation contains ten possible conditions: clear, scattered, broken, overcast, fog, drizzle, rain, snow, showers, and thunderstorms. The first step in developing a relationship between these cloud-cover conditions and surface temperature was to divide the ten possible conditions into separate categories based on their potential to inhibit heating. The conditions of clear, scattered, broken, and overcast were each designated as a separate category. Fog, drizzle, rain, snow, showers, and thunderstorms were all grouped together into a fifth category since it was assumed that they are usually associated with thick clouds and all provide a similar minimum of insolation compared to the other categories. A summertime afternoon fog event is usually observed only at high-elevation lookouts when they are buried in clouds associated with thick, general-storm clouds.

The following assumptions are then made relating changes in the cloudcover categories on consecutive days with corresponding temperature changes: (1) A change from one amount of cloud cover to another the next day will result in a temperature change, independent of general air-mass temperature change, and (2) The temperature change will be proportional to the degree of cloud-cover change, i.e., a large change in cloud cover between days will result in a larger temperature change than a smaller cloud-cover change.

The AFFIRMS fire danger prediction program operates mainly on 24-hour weather trends, rather than actual or forecast values so this objective evaluation is set up on a trend basis with a numerical value assigned to the trend in reported weather between 1400 PDT yesterday and 1400 PDT today. In order to evaluate the cloud-cover trend numerically, the number scheme shown in Table 1 was used for a 24-hour change between the five weather categories listed above (Fog and the precipitation events are combined into one category called "precipitation").

TABLE 1

24-Hour Sky-Cover Change Between 1400 PDT Yesterday and 1400 Today		
No Change	0	
Precipitation to overcast, overcast to broken, broken to scattered, scattered to clear	+1	
Precipitation to broken, overcast to scattered, broken to clear	+2	
Precipitation to scattered, overcast to clear	+3	
Precipitation to clear	+4	
Clear to scattered, scattered to broken, broken to overcast, overcast to precipitation	-1	
Clear to broken, scattered to overcast, broken to precipitation	-2	
Clear to overcast, scattered to precipitation	-3	
Clear to precipitation	-4	

-2-

This number scheme allows the trend in surface temperature change to be directly proportional to increasing or decreasing insolation as measured by sky-cover change.

The cloud-cover reports from fire-danger stations do not indicate the cloud type so this factor could not be used in determining the relationship with temperature change.

Several parameters could be used to measure the general air-mass temperature change. In this study the 850-mb temperature at 12Z of the current day was used. This is carefully analyzed during our regular forecasting routine and is readily available from our analysis chart. It is also a parameter predicted by the trajectory model for the next day so this can be used as guidance in an objective forecast scheme.

Once the parameters to be used were determined, data from two past seasons, 1976 and 1977, were utilized to determine the relationship between 24-hour general air-mass temperature change, cloud-cover change, and surface temperature change. The following three items of data were extracted for 124 days in July and August of 1976 and 1977:

- 1. The trend in sky-cover change between 1400 PDT yesterday and 1400 PDT today using the numbering scheme shown in Table 1 based on the average of all fire-danger stations in the weather zone, for each of the six weather zones.
- 2. The 24-hour change in 850-mb temperature between 12Z yesterday and 12Z today, in °C, determined over the weather zone in question.
- 3. The 24-hour change in average surface temperature between 1400 PDT yesterday and 1400 PDT today based on the observations from the fire-danger stations, with a trend value calculated for each of the six weather zones.

III. RESULTS

A linear regression was performed on these data with the 24-hour surface temperature change as the independent variable and sky-cover change and 850-mb temperature change as independent variables, using the general equation:

$$\Delta T = A \Delta T_{850} + B \Delta S.C. + C$$

where,

۰.₃

- $\Delta T = 24$ -hour change in average weather zone temperature in °F.
- $\Delta T_{850} = 24$ -hour change in 850-mb temperature over weather zone in °C.
- Δ S.C. = 24-hour change in sky cover or weather condition over weather zone, using the Δ S.C. number scheme of Table 1.

A, B, and C are coefficients to be determined; however, since the data are 24-hour changes rather than actual values, the coefficient C will be near zero for a large population.

The values for 124 cases were entered into a multiple regression program set up in a WANG programmable calculator. The following equations resulted for each zone:

ZONE 675	∆T = 1.4	ΔT ₈₅₀ + 3.2	∆s.c.
ZONE 680	$\Delta T = 1.4$	ΔT ₈₅₀ + 3.0	∆s.c.
ZONE 677	∆T = 1.2	ΔT ₈₅₀ + 3.5	∆s.c.
ZONE 682	∆T = 1.4	∆T ₈₅₀ + 3.2	∆s.c.
ZONE 684	$\Delta T = 1.2$	ΔT ₈₅₀ + 3.6	∆s.c.
ZONE 686	∆T = 1.1	Δτ ₈₅₀ + 3.6	∆s.c.

The general similarity of the coefficients for sky-cover change between zones should be expected since at nearly the same latitude changing sky cover should result in about the same surface temperature change. There may be slightly more effect from cloud-cover change over the northern zones (Zones 684 and 686) than the southern zones (675 and 680) since clouds may tend to be thicker and more persistent in the northern sections nearer to the normal track of storms.

Table 2 shows the multiple correlation coefficients, reduction in variance, and standard error of the estimate for each equation. Some of the error could probably be reduced by considering cloud type and persistence. Also the use of the 12Z 850-mb temperature change to estimate the air-mass temperature change for the current day introduced errors when active cold or warm advection was occurring. In these cases, of which there were several in the developmental data, the change up to 12Z this morning did not give an accurate indication of the effect on surface temperatures reported at 1400 PDT in the afternoon.

IV. USE AS AN OBJECTIVE AID

The solutions to the equations were transformed into nomograms for use as a forecast aid. These are shown in Figure 2. Since the equations for several zones were similar, the data for the similar zones were combined to form one equation for the graph. Zones 675, 680, and 682 were combined into one graph and zones 677, 684, and 686 were combined into a second graph.

The forecaster can use this aid either in the afternoon forecast for the next day using predicted 850-mb temperature change and sky-cover change or in the morning forecast for the current day using the observed 850-mb temperature change and shorter range sky-cover prediction. The forecaster

-4-

0

enters the graph with the 850-mb temperature change prediction in °C on the abscissa, goes vertically to intersect the 24-hour sky-cover change, then horizontally to the ordinate for the predicted surface temperature change in °F.

The equations were tested on all available days in July and August 1975 and 1978 for weather zones 675 and 686. The results are shown in Table 3.

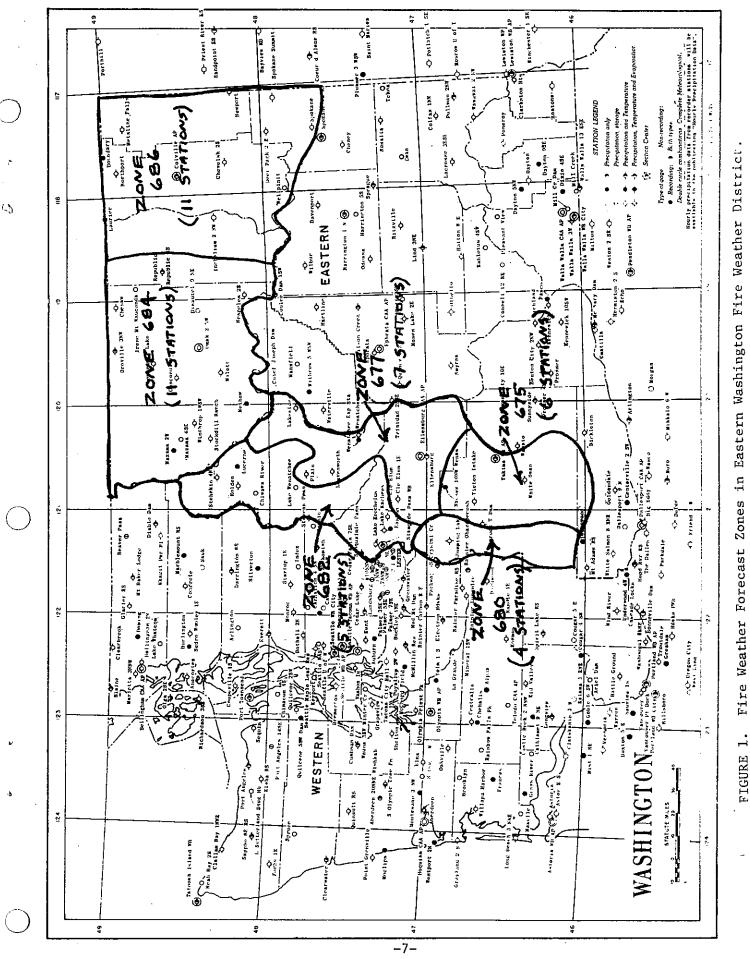
V. SUMMARY

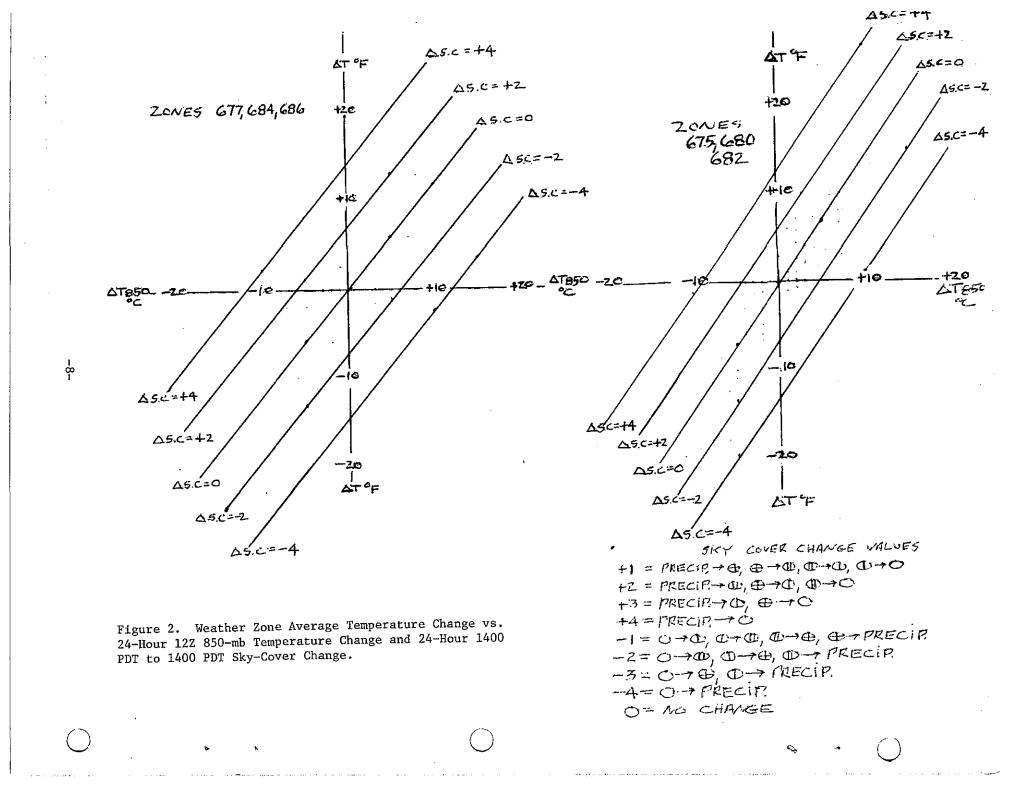
A relationship between surface temperature change and cloud-cover change was determined objectively for several weather zones in eastern Washington. This was combined with a measure of the general air-mass temperature change to produce equations which explained about 70 to 80% of the daily variation in surface temperature. The average error of the prediction equations when tested on two seasons of independent data was about 2 to 3°F. It is hoped that the study will at least make the forecaster more aware of temperature variations due to cloud-cover changes. The equations may also apply to other areas in the Pacific Northwest at similar latitudes or others could similarly be derived.

ZONE	VARIABLES USED	MULTIPLE CORR. COEFFICIENT	REDUCTION OF VARIANCE	STD. ERROR OF ESTIMATE
675	^{∆T} 850	.66	. 43	5.07 °F
	∆s.c.	.86	.74	3.49
680	ΔT ₈₅₀	.66	.43	5.11
	∆s.c.	.84	.71	3.61
677	∆T ₈₅₀	.55	.30	5.37
·	∆s.c.	.85	.72	3.41
682	^{∆T} 850	.59	.35	5,90
	∆s.c.	.80	.64	4.43
684	^{∆T} 850	.71	.50	5.32
	Δs.c.	.85	.72	3.47
686	^{∆t} 850	.71	.50	5.13
	∆s.c.	.89	. 80	2.78

Q

۶


SUMMARY OF REGRESSION ESTIMATE OF 1400 PDT SURFACE TEMPERATURE


TABLE 3

TEST OF EQUATIONS ON ZONES 675 AND 686 JULY AND AUGUST 1975

<u>1975</u>			יווהסמיד קינדי	ENCY FOR A		ODE OF.
ZONE	AVERAGE ABSOLUTE ERROR °F	<1°	<u>≼2°</u>	$\leq 3^{\circ}$	≤4°	<u>≤5°</u>
675 (62 days)	2.06	42%	66%	82%	90%	97%
686 (60 days)	3.05	30%	50%	62%	73%	83%
<u>1978</u>						
675 (62 days)	2.02	47%	74%	89%	92%	97%
686 (62 days)	2.73	39%	56%	66%	81%	89%

-6-

- NOAA Technical Memoranda NWSWR: (Continued)

- 92 Smoke Management in the Willamette Valley. Earl M. Bates, May 1974. (COM-74-11277/AS) 93 An Operational Evaluation of 500-mb Type Regression Equations. Alexander E. MacDonald, June 1974. (COM-74-11407/AS) 94 Conditional Probability of Visibility Less than One-Half Mile in Radiation Fog at Fresno, California. John D. Thomas, 95 Conditional Probability of Visibility Less than One-Half Mile in Radiation Fog at Fresno, California. John D. Thomas, 96 Conditional Probability of Visibility Less than One-Half Mile in Radiation Fog at Fresno, California. August 1974. (COM-74-11555/AS)
- Map Type Precipitation Probabilities for the Western Region. Glenn E. Rasch and Alexander E. MacDonald, February 1975. (COM-75-10428/AS)

- Eastern Pacific Cut-off Low of April 21-28, 1974. William J. Alder and George R. Miller, January 1976. (PB-250-711/AS)
 Study on a Significant Precipitation Episode in Western United States. Ira S. Brenner, April 1976. (COM-75-10719/AS)
 A Study of Flash Flood Susceptibility--A Basin in Southern Arizona. Gerald Williams, August 1975. (COM-75-11360/AS)
 A Set of Rules for Forecasting Temperatures in Napa and Sonoma Countles. Wesley L. Tuft, October 1975. (FB-246-902/AS)
 Application of the National Weather Service Flash-Flood Program in the Western Region. Gerald Williams, January 1976. PB-253-053/AS1
- (PB-253-053/AS)
 104 Objective Aids for Forecasting Minimum Temperatures at Reno, Nevada, During the Summer Months. Christopher D. Hill, January 1976. (PB-252-866/AS)
 105 Forecasting the Mono Wind. Charles P. Ruscha, Jr., February 1976. (PB-254-650)
 106 Use of MOS Forecast Parameters in Temperature Forecasting. John C. Plankinton, Jr., March 1976. (PB-254-649)
 107 Map Types as Aids in Using MOS POPs in Western United States. Ira S. Brenner, August 1976. (PB-259-594)
 108 Other Kinds of Wind Shear. Christopher D. Hill, August 1976. (PB-260-437/AS)
 109 Forecasting North Winds In the Upper Sacramento Valley and Adjoining Forests. Christopher E. Fontana, Sept. 1976. (PB-273-677/AS)
 100 Cool Unifer and Westerning Influence on Fortage Parifale Transferi. Opplance. William I. Dongen. Neuroper 1976.

- 110 Cool Inflow as a Weakening Influence on Eastern Pacific Tropical Cyclones. William J. Denney, November 1976. (PB-264-655/AS)

- (PB-264-655/AS)
 112 The MAN/MOS Program. Alexander E. MacDonald, February 1977. (PB-265-941/AS)
 113 Winter Season Minimum Temperature Formula for Bakersfield, California, Using Multiple Regression. Michael J. Oard, February 1977. (PB-273-694/AS)
 114 Tropical Cyclone Kathleen. James R. Fors, February 1977. (PB-273-676/AS)
 116 A Study of Wind Gusts on Lake Mead. Bradley Colman, April 1977. (PB-268-647)
 117 The Relative Frequency of Cumulonimbus Clouds at the Nevada Test Site as a Function of K-value. R. F. Quiring, April 1977. (PB-278-831)
- April 1977. (H9-272-8517) 118 Moisture Distribution Modification by Upward Vertical Motion. Ira S. Brenner, April 1977. (PB-268-740) 119 Relative Frequency of Occurrence of Warm Season Echo Activity as a Function of Stability Indices Computed from the Yucca Flat, Nevada, Rawinsonde. Darryl Randerson, June 1977. (PB-271-290/AS) 121 Climatological Prediction of Cumulonimbus Clouds in the Vicinity of the Yucca Flat Weather Station. R. F. Quiring,

- Yucca Flat, Nevada, Rawinsonde. Durry' Randerson, Yule 1977. (B227-12076)
 [21] Climatological Prediction of Cumulonimbus Clouds in the Vicinity of the Yucca Flat Weather Station. R. F. Quiring, June 1977. (PB-271-704/AS)
 [22] A Method for Transforming Temperature Distribution to Normality. Morris S. Webb, Jr., June 1977. (PB-271-742/AS)
 [24] Statistical Guidance for Prediction of Eastern North Pacific Tropical Cyclone Motion Part I. Charles J. Neumann and Preston W. Leftwich, August 1977. (PB-272-661)
 [25] Statistical Guidance on the Prediction of Eastern North Pacific Tropical Cyclone Motion Part II. Preston W. Leftwich and Charles J. Neumann, August 1977. (PB-273-155/AS)
 [26] Development of a Probability Equation for Winter-Type Precipitation Patterns in Great Falls, Montana. Kenneth B. Mielke, February 1978. (PB-281-387/AS)
 [27] Development of a Probability Equation for Winter-Type Precipitation Patterns in Great Falls, Montana. Kenneth B. Mielke, February 1978. (PB-281-387/AS)
 [28] Hand Calculator Program to Compute Parcel Thermal Dynamics. Dan Gudgel, April 1978. (PB-283-080/AS)
 [29] Fire Whiris. David W. Goens, May 1978. (FB-283-866/AS)
 [30] Flash-Flood Procedure. Ralph C. Hatch and Gerald Williams, May 1978. (PB-286-014/AS)
 [31] Automatéd Fire-Weather Forecasts. Mark A. Moliner and David E. Olsen, September 1978. (PB-289-916/AS)
 [32] Estimates of the Effects of Terrain Blocking on the Los Angeles WSR-74C Weather Rader. R. G. Pappas, R. Y. Lee, and B. W. Finke, October 1978. (PB-289-767/AS)
 [33] Spectral Techniques in Ocean Wave Forecasting. John A. Jannuzzi, October 1978. (PB-291-317/AS)
 [34] Solar Radiation. John A. Januzzi, November 1979. (PB-292-1317/AS)
 [35] Application of a Spectrum Analyzer in Forecasting Ocean Swell in Southern California Coastal Waters. Lawrence P. Klerulft, January 1979. (PB-292-716/AS)
 [36] Basic Hydrologic Principles. Thomas L. Die

- Ruscha, Jr., January 1979.
- A Simple Analysis/Diagnosis System for Real Time Evaluation of Vertical Motion. Scott Heflick and James R. Fors,
- 139 Aids for Forecasting Minimum Temperature in the Wenatchee Frost District. Robert S. Robinson, April 1979.

NOAA SCIENTIFIC AND TECHNICAL PUBLICATIONS

NOAA, the National Oceanic and Atmospheric Administration, was established as part of the Department of Commerce on October 3, 1970. The mission responsibilities of NOAA are to monitor and predict the state of the solid Earth, the oceans and their living resources, the atmosphere, and the space environment of the Earth, and to assess the socioeconomic impact of natural and technological changes in the environment.

The six Major Line Components of NOAA regularly produce various types of scientific and technical information in the following kinds of publications:

PROFESSIONAL PAPERS — Important definitive research results, major techniques, and special investigations.

TECHNICAL REPORTS—Journal quality with extensive details, mathematical developments, or data listings.

TECHNICAL MEMORANDUMS — Reports of preliminary, partial, or negative research or technology results, interim instructions, and the like.

CONTRACT AND GRANT REPORTS—Reports prepared by contractors or grantees under NOAA sponsorship. TECHNICAL SERVICE PUBLICATIONS—These are publications containing data, observations, instructions, etc. A partial listing: Data serials; Prediction and outlook periodicals; Technical manuals. training papers, planning reports, and information serials; and Miscellaneous technical publications.

ATLAS—Analysed data generally presented in the form of maps showing distribution of rainfall, chemical and physical conditions of oceans and atmosphere, distribution of fishes and marine mammals, ionospheric conditions, etc.

Information on availability of NOAA publications can be obtained from:

ENVIRONMENTAL SCIENCE INFORMATION CENTER ENVIRONMENTAL DATA SERVICE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION U.S. DEPARTMENT OF COMMERCE

> 3300 Whitehaven Street, N.W. Washington, D.C. 20235